Day 83: Whiteboarding & Assessment

AP Physics 1: Projectile Whiteboarding

We finally whiteboarded students’ results from Friday’s projectile motion activity using Pivot Interactives. We also made a lot of references to yesterday’s activity and how it fit with what we saw in the graphs. I always love this board meeting since things just click for students and projectile motion suddenly feels simple to them.


Physics: Bouncy Ball Whiteboarding

Students started whiteboarding the representations they’d sketched yesterday for a bouncing bouncy ball. We were only able to get through the energy bar charts today, but students started to make some connections that will help make more sense of the placed they struggled yesterday, like the v-t graphs.

bouncy ball.jpg

Chemistry Essentials: Assessment

Students took their density retake and their gas laws quiz. It ended up taking the whole hour since we had shortened periods today. A lot of students told me they felt like they improved on density, which was the goal.

Day 82: Projectile Motion Maps, Bouncy Ball Energy, & Density Refresher

Today was another sub day.

AP Physics 1: Projectile Motion Maps

Students worked on an activity based on Dan Meyer’s “Will It Hit the Hoop?” where they analyze a strobe photo of a basketball. I used this activity in Physics last year, which helped students make good connections to motion maps. I’m hoping the same will happen for my AP students.

Physics: Bouncy Ball Energy

Students started working on my lab to determine what dissipates a bouncy ball’s energy. I got through the opening discussion in one section yesterday, but recorded a short video introducing the lab for the other. Last year, I put together a scaffolded worksheet for students to sketch an assortment of representations and highlight the differences between the competing explanations.

Chemistry Essentials: Density Refresher

The density assessment students took before break was rough, I think at least partly because it was one of the last class periods on the last day of classes. My co-teacher and I decided tomorrow’s assessment will include another shot at density along with gas laws. Today, my co-teacher went over some extra practice on density that students worked on yesterday.


Day 72: Tests

Today was our last day of class before winter break. In all three of my classes, we wrapped up a topic by taking an assessment.

AP Physics 1: Energy Bar Charts & Unbalanced Forces

I’ve been giving students at least two in-class opportunities on every learning target this year, so this assessment covered energy bar charts and revisited unbalanced forces. Almost everyone improved on unbalanced forces, which is exactly what I want to see!

Physics: Conservation of Momentum

Students took their conservation of momentum test. Students have been saying the bar charts make the math very intuitive, and it definitely shows on the work I’ve graded so far. This is definitely the easiest time I’ve seen students have with momentum.

Chemistry Essentials: Density

This assessment was more hit or miss than my other classes. I had some students who did great, but a few were surprised to see some representations, like particle diagrams and a mass vs. volume graph, that were significant components of our daily work. I’m thinking about doing some individual conferences with students after break to try to get a better understanding of what’s behind that.

Day 71: Unbalanced Forces Practical, Mistakes Whiteboarding, & Density Practical

AP Physics 1: Unbalanced Forces Practical

Since tomorrow’s assessment will include a second shot at our unbalanced forces learning target, we did a practical where students used unbalanced forces and constant acceleration to predict the velocity of a cart after it traveled a certain distance down a ramp. While we haven’t really dug into energy calculations yet, I did encourage students to try doing it as an energy problem if they had time, and the groups that tried it were excited to see the same answer two different ways.

ap practical

Physics: Mistakes Whiteboarding

Students did mistakes whiteboarding to go over yesterday’s problems; not surprisingly, it went very quickly. I also didn’t have to get on students’ case about units or well-labeled diagrams, since they are at a point where they find it useful to see and were asking each other for that information when someone left it off.

I noticed a couple of groups in one section had started some interesting notation for their unknown I haven’t seen before; students really, really like to use x for their unknown, which I push back on, but these groups were using x plus a unit for their unknown. I can’t quite decide whether I like it; using x as an unknown does get in the way of using x to represent position, so I know I’d rather they use the standard variable. On the other hand, seeing the units written out for the unknown helped a lot of students see what math they needed to do and the students I talked to were very clear that “x m/s” represented how many meters the object traveled for every second, which the students just using v were not as consistently clear about. I’m trying to decide whether the potential value here outweighs the hurdles it may cause down the line; one option is to let them leave the units, but push they should still use the standard variable (like “v m/s” here). I don’t see myself ever introducing this kind of notation, but I’m also not sure I need to get students away from it if they find it useful.

phys mistake (1).jpg

Chemistry Essentials: Density Practical

As a practical to wrap up the density unit, I asked students to plan an experiment they could use to answer either whether the shape of an object impacts its density or whether the volume of an object impacts its density. It went about as I expected; initially, students were uncomfortable with how open-ended the task was, but, once they got started, they moved forward easily with the task. I think the challenge had more to do with students’ discomfort with this kind of task than their ability to complete it.

chem prac

Day 70: Systems and Bar Charts, Conservation of Momentum Problems, & Pivot Interactives

AP Physics 1: Systems and Bar Charts

Students worked on whiteboarding some problems switching between different systems for energy bar charts. Students were doing a nice job of switching smoothly between different systems.

ap bar chart

Physics: Conservation of Momentum Problems

Students worked on calculations with conservation of momentum. This is the first year I’ve really used momentum bar charts, and its also the first time I’ve had students call conservation of momentum easy. The best part was I overheard a lot of students talking about whether their answer was reasonable based on their bar charts. When one of my AP sections came in, I still had some bar charts on the whiteboard and my AP students asked why I didn’t teach them momentum bar charts since it made the problem seem much easier. I’m sold and will be bringing bar charts into AP next year.

Chemistry Essentials: Pivot Interactives Density

I am as part of Pivot Interactive’s Chemistry Fellows program.

Students worked on an activity in Pivot Interactives to identify materials based on their density. I ended up giving students a handout to record their work, rather than having them answer in Pivot’s interface, since something about writing on paper seems to feel more comfortable for a lot of my students. I was really excited about how many students on their own tried to decide between multiple materials with similar densities by paying attention to what they could see about the material. It was also nice to be able to easily split up the class to look at different liquids so we can have some conversation tomorrow about who should have similar answers and who should have different answers, and why.

pivot density.PNG

Day 69: Mistakes Whiteboarding & Card Sort

AP Physics 1: Energy Bar Chart Mistakes Whiteboarding

Students did mistakes whiteboarding with energy bar charts. There was some good discussion about what differences matter in energy bar charts at this point and what differences, like the exact number of boxes, are irrelevant.

ap bar chart.jpg

Physics: Momentum Card Sort

Students worked on a momentum transfer model card sort I got from Kelly O’Shea. I was (pleasantly) surprised by how easy it was for students to work out which equation went with each problem. The force-time graphs in the card sort were tough; part of the trick is those graphs are more similar across different problems than some of the other graphs and we haven’t made enough use of force-time graphs in other contexts for students to focus on the subtle details that distinguished the different graphs here.

card sort.jpg

Chemistry Essentials: Density Mistakes Whiteboarding

This class also did mistakes whiteboarding, but on a worksheet using different representations for density. There was some great discussion and some signs this group is starting to build an identity as a class, which is great.

Day 68: Energy Bar Charts, Momentum Bar Charts, & Density Problems

AP Physics 1: Energy Bar Charts

I introduced students to LOL diagrams and had them start working on some energy bar charts. Things seemed to go very smoothly. I have one section that is very small this tri, and I need to be conscious of how quick I am to jump in when students are stuck or have a question. In a larger class, I have an easier time leaving more space for students to think and discuss with each other since I hear less of the conversation and feel more pressure to move between groups.

Physics: Momentum Bar Charts

Students did some whiteboarding to wrap up momentum bar charts before taking a quiz. In my larger class, I tried representation jeopardy. This hour didn’t like it as much as my small class; students said they would prefer something that is structured more similar to the types of problems that show up on assessments. I’m not overly surprised, since many of my students are still much more comfortable with answer-getting than meaning-making, but I need to keep thinking about how my moves in the classroom place value on each approach to physics and how I can shift what I’m doing to place more explicit value on meaning-making.

Chemistry Essentials: Density Problems

Students worked on a worksheet connecting particle diagrams to density. I gave less instruction than I typically do, which lead to more student-to-student conversation and more student success than I’ve seen on this worksheet before. I get frustrated and push back when someone says “those kids” can’t handle reform-based science instruction, I’m still susceptible to that line of thinking and sometimes over-scaffold. When I give them space, the students I have in Chemistry Essentials can rise to the occasion just as well as the students I get in other courses.