Days 80-84: Impulse & Bouncy Balls

Around mid-day last Friday, we found out enough staff were out (almost all with COVID) that we would be remote this week. Monday was an asynchronous day so that teachers could post an assignment, then spend the rest of the day planning for the rest of the week. The rest of the week was synchronous following our usual bell schedule. We were required to have some synchronous instruction at the start of each hour, but were encouraged to make the rest of the hour something that students could do away from Zoom. In both my courses, I stuck to activities that should be doable in class time, but made them due at midnight rather than the end of class. I got really positive feedback from students since that gave them the option to take a break from their screen and do their physics later, especially for my classes in the middle of the day. That also meant I had time to look over their work before school and make some adjustments to the instruction I’d planned for the day. I think being transparent about how student work was informing my instruction also helped with work completion, since it gave students a clear reason to at least attempt the work on the day it was assigned.

Near the end of the school day on Thursday, we found out that next week will be remote, as well. Next week, I want to keep the same general structure since that seemed to work well for both me and for my students, but I want to try and get a little more student-to-student discussion.

Physics: Impulse

Our plan this week had been to introduce momentum and impulse. We normally start with a cart catching activity, where students find as many ways as possible to make it harder to catch a cart. That translated fairly well to an asynchronous lesson for Monday where we asked students to brainstorm ways they could change how difficult it was to catch a ball during a game of catch. I put all of the responses onto a Jamboard and did some sorting, which lead very nicely into a definition of momentum as well as the idea that force can chance momentum.

The rest of the week we relied heavily on Pivot Interactives (disclaimer: I work for Pivot Interactives writing activities). We started by introducing Newton’s 3rd Law, which we’d decided to save for momentum this year since that’s when students seem to do the most interesting and useful thinking with it, then did an activity where students evaluate two competing claims about what is transferred in a collision between two gliders on an air track. We haven’t done many of those kinds of questions this year, so students needed some support in figuring out what kind of evidence they needed, but it was mostly a matter of keeping them focused on the claim and not overcomplicating what to collect. The bit that got a little rocky is I tried to go from there to the impulse equation, which just didn’t flow naturally. I’ve thought about changing my momentum storyline to start with conservation, then narrow our focus to the individual objects that make up the system to look at impulse. In retrospect, a part of me wishes we’d made the leap when we switched to remote instruction since I think that storyline would have flowed better with the resources available to us, but sticking with the storyline we’d already planned took less thinking and will likely make for a smoother transition when we get back to in-person instruction.

AP Physics 1: Bouncy Ball Energy

As part of my energy unit, I’d planned to do an activity (shameless plug for my article on this activity in The Science Teacher) where students use video analysis to decide whether a bouncy ball dissipates energy primarily due to air resistance or due to the impact when it bounces. The hard part of this activity is prior to the video analysis, I have students do some whiteboarding where they sketch representations including LOL diagrams, free-body diagrams, and velocity vs. time graphs for the bouncy ball-Earth system first assuming only air resistance dissipates energy, then assuming only the impact dissipates energy. I ended up using a version of this activity I wrote for Pivot Interactives that replaces that whiteboarding with multiple choice questions. I have struggled this year with helping my students effectively use diagrams as thinking tools, so I think having them choose from a set of diagrams was a useful scaffold. I had the questions set to autograde, which made it easy for students to progress asynchronously, but I think some good discussion could have happened if I’d turned off autograding and instead had students use our synchronous time to discuss their answers and come to a consensus.

Days 75-79: Values and Beliefs & Elastic Potential Energy

This week has felt a little weird. Coming back from break, we’d gotten some messages to be ready to shift to virtual learning and all week the number of students and staff out went up, so everyone felt like we were in limbo. Near the end of my teaching day today, we got word that next week will be remote.

Physics: Values & Beliefs About Physics Learning

We started this week with a version of the values and beliefs lesson from Kelly O’Shea. There wasn’t as much discussion within groups as I was hoping (and it probably didn’t help that I was giving groups more space than usual to try and reduce my COVID exposure), but students had some great insights and really interesting things to say on the individual reflections I had them complete. One thing I felt like was missing in how I implemented this was some conversations about the costs and benefits of different views of physics and physics learning. One of the last things I had students do in their groups was pick some values or beliefs they think we should aspire to, and a lot of groups said we should aspire to do a better job of valuing memorizing facts and equations. I wonder if giving more space to why certain values and beliefs are or are not given a space in a particular classroom would have helped with some conversation about why they see memorizing as important and whether that is compatible with our classroom.

After two days of that, we spent the rest of the week on some problems about pushing cardboard boxes based on problems in Matt Greenwolfe’s More Models in Modeling materials. My goal was to refresh students on velocity vs. time graphs and free-body diagrams before we dive into momentum. There was a lot of great discussion, with lots of animated arguments. I was also really pleased at how often I could have students simply add a diagram, such as a system schema, to identify and fix their mistakes. I still need to work on how to facilitate a good whole class discussion with these problems, but I think part of the issue is I approach these problems with what I call consensus-building discussions, where I have every group whiteboard the same problem, then we try to resolve differences, but I don’t do this type of discussion very often so students don’t have much practice with it.

AP Physics 1: Energy

This week, we focused on going from LOL diagrams to doing calculations with conservation of energy. We started by doing a lab to find the equation for spring potential energy, which gives us all of the major energy types, then did a card sort that included equations based on just the types of energy and equations based on measurable quantities like velocity, mass, and height. The card sort made for a very nice bridge between the two types of mathematical representations.

Days 72-74: Unbalanced Forces & Kinetic Energy

We had a short 3-day week to lead us into break.

Physics: Unbalanced Forces

We wrapped up unbalanced forces this week with a lab practical. I put a cart on a ramp, held in place by a string attached to a force sensor. Students had to first predict the tension in the string and next predict the time it would take the cart to travel between two photogates on the track once I cut the string. It was trickier than I expected for students to recognize that the tension in the string would be the same as the net force on the cart once the string was cut. Since that was an important idea in the paradigm lab we did this year, I left students to figure out that point on their own, but I think it would have been worthwhile to give students some questions or other structure to think through that aspect of the practical. We haven’t revisited velocity vs. time graphs lately, so I was very excited to see how well they did annotating their graphs and setting up equations to find the time.

A cart on a track with two photogates. The cart is tied with a piece of string to a force sensor and is held in place just before the first photogate.

AP Physics 1: Kinetic Energy

Students used Pivot Interactives for a lab to find the mathematical model for kinetic energy. Their data came out beautiful, but the introductory section of the activity didn’t do as much as I’d hoped to prepare students to collect data. This fits with a larger pattern I’ve noticed this year where students in both my courses don’t seem to make a clear connection between the pre-lab discussion (which the introductory section was similar to) and the actual lab. I think I haven’t helped students make a clear connection between the experimental design thinking we do in those discussions and what they will actually need to do in the lab. I’m giving some thought to how I can do a better job of showing how those discussions lead naturally to what students will be doing in the lab.

A silicone puck is levitating over a curved magnetic track. The puck is held in place near the top of the track by a small block of wood.

Days 62-71: Unbalanced Forces & LOL Diagrams

I think last week is the first time I missed a post on this blog. The end of my grad school semester plus the usual challenges of the Thanksgiving to winter break stretch got the best of me.

Physics: Unbalanced Forces

Last week, we did a paradigm lab for unbalanced forces. I was really dreading the classic half-Atwood machine, so tried a lab Kelly O’Shea suggested. We set up a ramp, then used a string to connect a cart to a force sensor. Next, I cut the string and students observed that the cart accelerated down the ramp. Students were able to reason out that the tension in the string before it was cut must match how unbalanced the forces on the cart are after the string is cut. Students also were quick to recognize that we could change the tension in the string by changing the angle of the ramp. Students then went and collected data to find a relationship between the size of the unbalanced force and the acceleration of the cart. Compared to the half-Atwood, students had a much clearer conceptual understanding of the lab and the data was much cleaner, so I will be sticking with this approach.

A Vernier sensor cart on a ramp tied with a piece of string to a force probe held in a person's hand

This week, we introduced problems by starting with a card sort where students matched a situation to the motion map, free-body diagram, and vector addition diagram. The acceleration arrows on the motion maps seemed to help students with thinking about the direction of the net force, though a lot of students needed some prompting to use the motion maps. I think that is because they haven’t been a very meaningful sensemaking tool in my class before now. If I want students to be ready to use them with unbalanced forces, I need to give some thought to how I’m going to push students to make meaning from motion maps when they are first introduced.

Purple cards in four piles. One pile has text describing a problem, one pile has motion maps with acceleration arrows, one pile has unlabeled free-body diagrams, and one pile has unlabeled vector addition diagrams.

AP Physics 1: Conservation of Momentum & LOL Diagrams

Last week, we worked on conservation of momentum. I introduced momentum bar charts so we could do some problems from the College Board’s AP Physics 1 workbook. They seemed to really help students, so I wish I’d introduced them much earlier. Students ended up not making much connection between the problems we’d done earlier and the momentum bar charts, so I think I needed to introduce the bar charts right off the bat. The quiz didn’t go as well as I would have liked, but next week’s quiz will include a retake. I’m thinking about what I want to build into class next week as a way to address the gaps I saw on the quiz.

This week, we’ve been focused on energy bar charts and LOL diagrams. We did a lab I’ve done in the past where students raise a cart to the same height above the table using ramps of different angles to see the force vs. distance graph always has the same area. After that, I defined the major forms of energy we’ll be dealing with and students practiced drawing energy bar charts, including for situations where they switch between systems. These are coming really easily to my students and we had some great discussions using mistakes whiteboarding on some bar chart problems. The big challenge will be helping my students revisit these ideas after break.

Days 103-106: Kirchoff’s Laws & Energy Card Sort

AP Physics 1: Kirchoff’s Laws

Students worked on developing Kirchoff’s Laws this week. We started with PhET’s circuit construction kit, then got out the power supplies and resistors. Some groups had trouble recognizing the simulation and the physical lab as addressing the same concepts, but explicitly asking groups how their results compared seemed to help students make the connections. There was also some good discussion about why the results in the physical lab didn’t match the simulation exactly. A thermal photo showed some heat at the alligator clips, which lead to some conversation about whether the wires we were using were ideal.

Physics: Energy Transfer Card Sort

This week we worked on starting energy conservation problems. To help the transition from bar charts to problems, I turned some problems Kelly O’Shea and Mark Schober wrote for the New Visions physics curriculum into a card sort. Seeing cards with two versions of the conservation of energy equation seemed to help a lot of students see how to build equations from the bar charts, which made the problems much smoother than in the past.

Days 98-102: Circuits Intro & Energy Bar Charts

AP Physics 1: Circuits Intro

We used PhET’s circuit construction kit to introduce some circuit basics and develop Ohm’s Law. Afterward, we used nichrome wire to test how the length of a wire affects its resistance. The data came out great, with groups that used thinner gauges of wire consistently getting larger slopes than groups who used thicker gauges. I usually skip over resistivity, but, at the AP reading last year, Wayne Mullins shared how he uses resistivity as a conceptual basis for Kirchoff’s Laws and I’m really excited to try that approach with my students this year.

Physics: Energy Bar Charts

This week was all about switching over to energy bar charts. I also noticed students are getting much more vocal during whiteboard sessions. I can’t figure out what’s behind it, but I’m really enjoying it. We’re getting close to the end of the trimester, and a lot of students switch between hours (or even between teachers), so I’m starting to think about how I can help students maintain this progress at the transition.

Days 68-72: Energy Practical & Pushing Boxes

AP Physics 1: Energy Practical

This week, students worked on applying conservation of energy. We wrapped it up with a lab practical to find the spring constant of a popper toy. To help with what makes a good procedure, I had groups start by writing out the steps they were going to follow on a whiteboard. Then, they traded whiteboards with another group and had to follow the procedure they were given to actually collect data. One group came up with a nice strategy of writing out the equation they’d use in their calculations, then checking off each variable as they added a step to measure it.

Physics: Pushing Boxes

Students spent a lot of time this week on problems applying Newton’s 3rd Law and synthesizing Newton’s Laws, including some great problems originally from Matt Greenwolfe where students draw free-body diagrams and velocity vs. time graphs for boxes pushed across various floors. While there was some great discussion, I think these problems would have been more valuable much earlier in the forces model. In general, I think Newton’s 3rd Law feels like an afterthought in how we approach forces. With some shifts in what we’re doing early in this model, we could better integrate key elements of this model and reduce the need for doing some kind of synthesis at this point in the unit.

Days 63-67: LOL Diagrams & Newton’s 3rd Law

AP Physics 1: LOL Diagrams

Students worked on sketching bar charts and LOL diagrams to show energy transfers. I was really pleased with how comfortable students were switching between different systems. I started out the week by having students use a spring scale to pull a cart up different ramps, always raising their cart to the same height above the table. We then sketched force vs. displacement graphs to introduce the idea of work and gravitational potential energy. Getting both simultaneously meant the concepts blurred together for students at first, but that issue got resolved as we did mistakes whiteboarding with energy bar charts and LOL diagrams.

Physics: Newton’s 3rd Law

One of our major tasks this week was developing Newton’s 3rd Law. Students started by predicting how the forces on two colliding carts would compare, then we tested out the collisions. As we tested the collisions, I cued students to notice the relative accelerations of the carts, which I think helped students see the useful thinking in their original predictions. Before we officially stated Newton’s 3rd Law, I borrowed an idea from Mark Schober and had students play with film canisters with magnets inside to test and refine their rule before the whole-class discussion.

Day 92: Board Meeting, Representing Free Fall, & 2 Truths and a Lie

AP Physics 1: Pendulum Board Meeting

Students whiteboarded their results from yesterday’s pendulum lab. For mass and release angle, there were a couple of groups who sketched graphs that did not start at zero, which was great for having some discussion about why the scale of your graph matters. This was also the first graph students had that wasn’t quadratic or linear, so no groups linearized initially and we had some fantastic conversation about the intercept, which actually started in some groups while they were still prepping whiteboards. By the end of the hour, every group had linearized and was on-board with a square root relationship.

ap pendulum.jpg

Physics: Representing Free Fall

Students used some questions I modified from Michael Lerner to represent a falling orange using tools from each model we’ve covered so far this year. By the end of the hour, students commenting that free fall and projectile motion really aren’t anything new, which was exactly the goal! Students were struggling to connect this activity to the graphs we discussed yesterday, so that will be something to work on tomorrow.

phys orange.jpg

Chemistry Essentials: Periodic Table 2 Truths & a Lie

After discussing some of the trends in the periodic table, we did some whiteboarding to practice reading the periodic table and recognizing the trends. Since there isn’t a whole lot of depth to the questions I could ask at this point, each group prepped a whiteboard with two correct statements and one incorrect statement. Then, they traded whiteboards with another group who had to find and correct the wrong statement.

chem 2truths.jpg

Day 87: Projectile Practical, Energy Problems, & Board Meeting

AP Physics 1: Projectile Practical

Students finished predicting where a marble rolled off a lab table will hit the floor. Once students have a success, I gave them a lighter marble and asked them to predict where it will land without taking any new measurements.

IMG_1393

Physics: Energy Problems

Students worked on calculations using conservation of energy. This was a tougher leap than I expected given how easily students got the hang of setting up conservation of momentum problems from bar charts. I think a card sort similar to the one we did for momentum would have been a good stepping stone.

Chemistry Essentials: Board Meeting

Students had a board meeting with their results from yesterday’s lauric acid lab. I had students collect data for the acid both melting and freezing, which made for a good visual of how similar those processes are. Students also made some good connections to last week’s activity in Pivot Interactives. I think starting with the cleaner data helped students to see the patterns in their data and there was some great conversation about why everyone had the same temperatures on their flat sections today while different groups got different temperatures on their graphs last week.

lauric board.jpg