We’re nearing the end of the school year. Seniors finish on May 29, and we’ve been asked to finish instruction by today so that next week can be reserved for students to work on missing work and reassessments.
AP Physics 1: Wrap-Up
Rather than start anything significant after the AP exam, I decided to keep this week fairly easy. I asked students to fill out an end-of-course survey and posted a discussion board where they can share how their family is celebrating graduation. Based on the responses so far, the most useful questions I put on the survey are about what other teachers did during distance learning that helped students learn and helped them feel connected to their class. I’ve had very few conversations about teaching with other staff in my building during distance learning, so it’s been very helpful to hear what’s happening in other classes and identify some teachers who’s brains I need to pick. Assuming we have some distance learning next year, I want to ask my building leadership to figure out ways for teachers to do a better job of sharing with each other.
Physics: Spring Period Calculations
Students finished up a lab to figure out what affects the period of a spring. It was a little frustrating that, just like in the period vs. length graphs on pendulum lab, most students described their period vs. mass graphs as linear, even after recognizing the intercept should be zero. While I was frustrating, it isn’t surprising that students struggled here. When we’re face-to-face, most students usually describe their graph as linear, too, until someone brings up the intercept during the board meeting. I think there are two main issues leading to this.
First, even though we have a question on our standard lab packet about whether the intercept makes sense, we haven’t done a great job of helping students connect the expected intercept to the shape of the graph. As a result, students treat questions about the intercept as completely separate from questions about the shape. Face-to-face, even if kids aren’t ready to make that connection independently, the conversation during the board meeting gets everyone there. I think I could make better use of discussion boards to get something similar in an online environment.
Second, we don’t talk much about uncertainty in this course, so students have trouble deciding whether an intercept is big enough to matter. At the start of the year, I see students giving a lot of weight to very small intercepts and, by the end of the year, I see the opposite with students quick to say fairly large intercepts are effectively zero. I think it would help if we incorporated some very basic uncertainty next year. One option may be to have students estimate how far they may be off on measurements on the vertical axis, then compare that to the intercept they get.
Chemistry Essentials: Balancing Practice
Students continued working on balancing chemical reactions by doing another set of practice problems, this time including some formulas with polyatomic ions. I haven’t heard from any kids with questions this week, so I assume it’s going smoothly. I’m focusing a lot of my time on students who haven’t been engaging in the course, and have gotten a few of the kids who weren’t on track to get a credit to turn some things in. Today is the last round of parent phone calls, so hopefully I can help a few more kids get on track to at least pass the class.