AP Physics 1: Constant Acceleration Representations

We spent this week working on getting representations for constant acceleration down. I made quite a bit of use of Brian Frank’s magnetic vector manipulatives during class discussions of motion maps. I think it would be worthwhile to make a set for each lab group; I don’t have magnetic surfaces at my lab stations, but I think the laminated arrows would still be useful to students while they’re working.

I’ve been doing more work on collaboration so far this year, and I’m seeing it pay off with students seeking out input from a greater variety of people when they’re stuck and with ideas jumping between groups much more than in the past. I especially love when students start working problems with one group, then whiteboard with different people and begin by comparing approaches.

Physics: Constant Velocity Calculations

Students worked on applying the constant velocity of a particle model to calculations, including predicting where two buggies will collide. One challenge, which has come up the past few years, is a lot of students are having trouble connecting the calculations to the representations we’ve been using. I think there’s a couple of things going on. In a lot of classes, once students have taken an assessment, they no longer need to use those skills, so I think some students feel like they are done with constant velocity representations after last week’s quiz. I think the other hurdle is some students, especially those less confident in math, are looking for things they can memorize to bypass the sense-making involved in sketching the diagrams. I haven’t figured out good strategies to help students work through these hurdles aside from coaching individuals and small groups on doing the sense-making and sketching the diagrams when they are stuck. I also need to keep reminding myself that as the year goes on, more will get on board with continuing to use skills we’ve assessed and working through the sense-making steps.