Day 140: Whiteboarding & Pivot Limiting Reactants

AP Physics 1: Board Meeting

Students whiteboarded their results from yesterday to get to a definition of angular momentum, as well as the relationship between torque and angular momentum. They made nice connections to conservation of linear momentum as well as impulse.

Physics: Ray Diagram Mistakes

We did mistakes whiteboarding with yesterday’s ray diagram problems. Students were doing very well figuring out which rays were critical to the problem and catching each other’s mistakes.

physics Ray mistake.jpg

Chemistry Essentials: Pivot Limiting Reactants

I am as part of Pivot Interactive’s Chemistry Fellows program.

Students used Pivot Interactives to do a lab involving limiting reactants. Since lab data makes it tough to use particle diagrams, I tried having students convert their balanced reaction equation into “for every” statements. A lot of them were pretty successful using those statements to make sense of the other calculations I asked for.
pivot limiting.PNG

Day 139: Angular Momentum, Ray Diagrams, & Limiting Reactants

AP Physics 1: Angular Momentum

I am as part of Pivot Interactive’s Chemistry Fellows program.

Students used Pivot Interactives to explore collisions that involve angular momentum. I especially like the activity they have with a marble fired at a wood block since it provides an opportunity to review linear momentum, as well as discover a relationship between torque and angular momentum.

Pivot rot collision.PNG

Physics: Ray Diagrams

Students sketched ray diagrams to explain their observations in Friday’s lab. Students were able to make good connections between their ray diagrams and their observations.

physics ray (1).jpg

Chemistry Essentials: Limiting Reactants

Students whiteboarded some limiting reactant problems, emphasizing the particle diagrams that could be used to solve the problems.

chem limiting (2).jpg

Day 138: Multiple Choice, Pinholes, & More Limiting Reactants

AP Physics 1: Multiple Choice

After a short quiz, we used Plickers to review some multiple choice. There was a lot of good discussion about the problems and some good test-taking strategies also came out of the conversations.

Physics: Pinholes

Students made observations and dew ray diagrams for some pinhole viewers. They had some trouble getting images at first, but, once they got the hang of it, seemed to enjoy the lab. It was a nice, sunny morning, so we went out the back door of my classroom to look at things, but it was also chilly, so most students went back inside when they were drawing ray diagrams.

pinhole viewer.jpg

Chemistry Essentials: More Limiting Reactants

Students did some limiting reactant problems involving polyatomic ions. All of the problems were ones that could be solved by drawing a particle diagram, and students seem to be embracing those as a problem-solving tool.

Day 137: Lots of Whiteboarding

AP Physics 1: Unbalanced Torque Whiteboarding

We did some mistakes whiteboarding with some torque problems. Students made great connections to what they already know about unbalanced forces, which is making it possible to move quickly through the topic.

AP torque mistake.jpg

Physics: Ray Diagram Whiteboarding

Students whiteboarded some ray diagrams from yesterday’s shadow lab. They made the connections I wanted them to make and were making sense of how the ray diagrams fit with what they saw.

physics ray.jpg

Chemistry Essentials: Limiting Reactant Whiteboarding

We did some whiteboarding of limiting reactant problems emphasizing the particle diagrams as a problem-solving tool. I haven’t pushed the diagrams as much this year as in the past, and it showed on a quiz I graded earlier today. Now is time to start rectifying that mistake!

chem limiting (1).jpg

Day 136: Board Meeting, Shadows, & Limiting Reactants

AP Physics 1: Unbalanced Torque Board Meeting

Students whiteboarded their results from yesterday. They quickly and easily made the connections I was after and the idea of rotational interia seemed to click well.

AP torque.jpg

Physics: Shadows

I did a quick intro to ray diagrams. I like to clap some chalk dust over the beam from a laser pointer to show the light travels in a straight line. This year, I followed up with clapping chalk dust over a flashlight beam to see the cone of light and motivate drawing multiple rays, which worked very nicely. Students then played with shadows and drew ray diagrams to explain their observations.

Chemistry Essentials: Limiting Reactants

Students worked on some limiting reactant problems. Based on some questions students asked yesterday, we also revisited a reaction we’ve done with magnesium and hydrochloric acid. I set up one flask with indicator and hydrochloric acid to use as a reference. In the other two flasks, I also added magnesium and tasked students with making observations to determine what the limiting reactant was in flasks 2 and 3, which they answered using a CER.

chem limiting 2.jpg

Day 132: Angular Motion Representations, Whiteboarding, & Stoich Problems

AP Physics 1: Angular Motion Representations

We started by discussing yesterday’s activity to introduce angular velocity; there was some great debate about which dot on the disk was moving the fastest, which lead exactly where I wanted it to. Afterward, students worked on some problems translating between different representations of angular motion. Students fell very easily back into the kind of thinking we’d done with linear motion, which made the problems a breeze.

Physics: Whiteboarding

We finished going over the standing wave problems and took a quiz on the topic.

Chemistry Essentials: Stoichiometry Problems

Students worked some stoichiometry problems that included polyatomic ions. Most students are doing very well with the problems, which has me very optimistic about tomorrow’s quiz.

Day 131: Pivot Angular Motion, Whiteboarding, & Pivot Stoich

I am a part of the Pivot Interactive’s Chemistry Fellows program.

AP Physics 1: Pivot Interactives Angular Motion

As students finished their torque quiz, I had them use Pivot Interactives to look at the motion of a spinning disk and come up with two different answers to which dot on a spinning disk is moving the fastest. Tomorrow, we’ll use those two answers to get into angular velocity vs. tangential velocity.Pivot angular.PNG

Physics: Whiteboarding

We spent some time whiteboarding yesterday’s problems. Students resisted drawing the diagrams for standing waves, but, once they got the diagrams, they were able to solve the problems.

Chemistry Essentials: Pivot Interactives Stoichiometry

Students used Pivot Interactives to compare their prediction for how much hydrogen gas should be produced in a reaction to how much was actually produced. I ran into an issue where a few students were very insistent that a prediction is a guess, so their calculation could not be a prediction. I didn’t have a great response in the moment aside from in science, a prediction should have something to back it up, which can be a calculation.

Another hurdle I ran into today is I have one section where a lot of students really resist talking to their group members, and the computers made it easier for them to work in isolation. As a result, I realized partway through the hour I was frequently answering the same questions multiple times with a given group and I was helping individual students with portions of the activity their partners knew how to do. I need think about how I can help my students have more productive collaboration within their group.

Pivot stoich.PNG

Day 129: Problems, Standing Waves, & Problems

AP Physics 1: Torque Problems

I was much more teacher-directed today than I typically shoot for. I ended up walking students through how to approach balanced torque problems; students were pretty into the idea that they can pick a pivot point for the problem that lets them solve for different quantities. We had a few minutes at the end for some whiteboarding. While students aren’t confident yet, I think they are doing just fine on balanced torques.

Physics: Standing Waves

We went through a guided discussion to get at the patterns for standing waves using first a wave generator with a string, then a singing rod, and ending with a tuning fork. When there were some good points for small group discussion, I had students work in their packets, but I think it would have been better to have them use whiteboards.

Chemistry Essentials: Stoichiometry Problems

Students worked some stoichiometry problems. We stuck to whole number ratios so students could draw particle diagrams as a tool to work through the problems.

Day 127: Board Meeting, Slinkys, & Molar Mass

AP Physics 1: Torque Board Meeting

We had our board meeting to get to the definition of torque. As expected, in the class where I had students plot the ratio of the forces on one axis and the ratio of the radii on the other, results were rough and I had to step in. In my other section, results came out beautifully and students were quick to figure out why their graphs had intercepts. I also introduced students to Brian Frank’s area models for torque, which students seemed to grasp.

ap lever board.jpg

Physics: Slinkys

We used slinkys to start figuring out some ideas about longitudinal waves. Students were pretty successful at noticing the things I wanted them to notice. As with transverse waves, we tied some ribbons on the spring to help track the particle motion.

slinky.jpg

Chemistry Essentials: Molar Mass Lab

I got out samples of several different materials, and had students weigh a sample and figure out how many moles they had. Not the most dramatic lab, but it was some good practice.

Day 126: Levers & Whiteboarding

AP Physics 1: Levers

Students did a lab with levers to introduce torque. I usually take 3-4 days on lever labs, so tried to shorten it. In my 2nd hour, I had students graph the ratio of the forces on one axis and the ratio of the radii on the other; the results so far are looking messy, so I think I tried to accomplish too much with that approach. In my other section, I had half the class keep the positions constant and graph the two forces, while the other half of the class keep the forces constant and graphed the distances from the pivot. The results are looking really nice, so I think that was a better abbreviation.

ap lever.jpg

Physics: Whiteboarding

We whiteboarded and discussed a couple of wave problems from TIPERs. Students seemed to find the problems pretty straightforward.

Chemistry Essentials: Gallery Walk

We did a gallery walk to go over Friday’s problems that combined balancing with molar mass. Students are starting to be able to shift away from the blocks we’ve been using for balancing and rely more on their particle diagrams, which is great to see.

chem gallery.jpg